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Abstract

This article is a sequel of [J.-A. Désidéri, Hierarchical optimum-shape algorithms using embedded Bézier parameteriza-
tions, in: Y. Kuznetsov et al., (Ed.), Numerical Methods for Scientific Computing, Variational Problems and Applications,
CIMNE, Barcelona, 2003], in which we defined formally a hierarchical shape optimization method based on a multi-level
shape representation by nested Bézier parameterizations (FAMOSA), and [J.-A. Désidéri, A. Janka, Multi-level shape
parameterization for aerodynamic optimization – application to drag and noise reduction of transonic/supersonic business
jet, in: E. Heikkola et al., (Ed.), European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS 2004), Jyväskyla, 24–28 July 2004] where we conducted some preliminary numerical experiments of shape
optimization in aerodynamics. Here, we are testing the full multi-level optimum-shape algorithm (analogous in logical
structure to the classical full multigrid method). Second, we propose a technique for parameterization self-adaptivity. Both
methodological enhancements are assessed by novel numerical experiments on an inverse shape model problem, confirm-
ing both are very effective.
� 2007 Elsevier Inc. All rights reserved.

MSC: 65C20; 76N25; 65C17

Keywords: Partial–differential equations; Computational methods; Numerical shape optimization; Compressible aerodynamics
1. Introduction

Piet Wesseling has made major contributions to the theory, applications and education of computational
methods, particularly in the areas of fluid dynamics and multigrid methods [1]. In this article, we propose a
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technique to extend classical multi-level strategies to parametric shape optimization, with a particular empha-
sis on optimum-shape design in compressible aerodynamics.

We focus on certain methodological questions in numerical shape optimization when a partial–differential
equation (PDE) is solved as a state equation. Ultimately, we aim at enhancing the computational efficiency of
optimum-shape algorithms in aerodynamics, in which for example, the three-dimensional Euler equations for
compressible perfect gas are often used to optimize the aerodynamic coefficients of aircraft configurations.
Whence, each evaluation of the cost functional is computationally costly, and improving the optimization
algorithm convergence rate is a major concern.

In aerodynamics, evaluating the cost functional gradient raises non-trivial theoretical questions [12] since
the flow is a weak solution. Additionally, it is another computational endeavor, which can be realized, how-
ever, by solving a discrete approximate adjoint-equation as in [14], or by means of automatic differentiation as
in [5,13]. Hessians are still seldom computed, and typical gradient-based methods employ unsophisticated pro-
cedures for stepsize adjustment. More often, even more rustic optimization techniques, such as the classical
simplex search method, or the less conventional evolutionary algorithms (EAs), including the genetic algorithms

(GAs) and the particle swarm optimizers (PSOs), are often preferred to achieve greater robustness in complex
nonlinear situations in which convergence, and even sometimes the optimization problem formulation itself
may be problematic otherwise. In our applications, we favor the simplex method which seems to realize,
for moderately complex optimization problems, an adequate compromise between simplicity, robustness
and computational performance.

Our research direction for improving the convergence rate of the optimization iteration relies on the par-
ticular handling of the geometrical shape to be optimized in a multi-scale algorithm. The method was originally
introduced in [6], where we proposed to construct a hierarchy of embedded (or nested) Bézier parameteriza-
tions to serve as a multi-level support to the shape optimization algorithm.

For example, in two-dimensional cases, we consider planar curves represented by Bézier parameterizations
of the form:
xðtÞ ¼
Xn

k¼0

Bk
nðtÞxk; yðtÞ ¼

Xn

k¼0

Bk
nðtÞyk ð1Þ
in which the parameter t varies from 0 to 1, n is the degree of the parameterization, and
Bk
nðtÞ ¼ Ck

ntkð1� tÞn�k ð2Þ

is a Bernstein polynomial, Cn

k ¼ n!
k!ðn�kÞ!, and� �
P k ¼
xk

yk

ðk ¼ 0; 1; . . . ; nÞ ð3Þ
is the generic control point. The coordinates of these control points are split into two vectors
X ¼ fxkg; Y ¼ fykg; k ¼ 0; 1; . . . ; n ð4Þ

and we refer to the vector X as the support of the parameterization, and the vector Y as the design vector. Typ-
ically, we optimize the design vector for fixed support according to some physical criterion, such as drag reduc-
tion in aerodynamics. The somewhat unsymmetrical roles dispensed to the vectors X and Y are chosen to
reduce (to n essentially) the dimension of the search space in the optimization phase, which is the most numer-
ically costly and subject to numerical stiffness.

We also use the notation:
xðtÞ ¼ BnðtÞTX ; yðtÞ ¼ BnðtÞTY ð5Þ

in which the vector BnðtÞT ¼ B0

nðtÞ;B1
nðtÞ; . . . ;Bn

nðtÞ
� �

. In all this article, only supports for which the sequence
{xk} is monotone increasing are said to be admissible and considered throughout. Thus, the function x(t) is
monotone increasing and defines a one-to-one mapping of, say, [0, 1] onto itself. Recall also the simple formula
for the derivative:
x0ðtÞ ¼ n
Xn�1

k¼0

Bk
n�1ðtÞðxkþ1 � xkÞ ¼ nBn�1ðtÞTDX ð6Þ
in which D is the n� ðnþ 1Þ matrix associated with the forward-difference operator (DX k ¼ xkþ1 � xk).
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Our geometrical construction employs the degree-elevation process, well-known in the computer-aided

design literature (see for example [3]). This process permits to cast (1) into the following equivalent Bézier
parameterization of degree nþ 1:
Fig. 1
param
pointin
optimi

Fig. 2.
contro
xðtÞ ¼
Xnþ1

k¼0

Bk
nþ1ðtÞx0k; yðtÞ ¼

Xnþ1

k¼0

Bk
nþ1ðtÞy0k ð7Þ
in which the new control points P 0k ¼ ðx0k; y0kÞ are obtained from the former by convex combinations:
P 00 ¼ P 0; P 0k ¼
k

nþ 1
P k�1 þ 1� k

nþ 1

� �
P kðk ¼ 1; 2; . . . ; nÞ; P 0nþ1 ¼ P n ð8Þ
obtained by multiplying (1) by ð1� tÞ þ t and grouping together the monomials in tkð1� tÞnþ1�k, for each k.
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. One-dimensional example of embedded parameterizations: the triangles represent the supports X of three nested Bézier
eterizations of degree 4, 8 and 16 of an RAE2822 airfoil obtained from the first by 4 and 12 successive degree elevations; the symbols
g upward (respectively downward) are associated with the upper (respectively lower) surface; the degree 4 support has been

zed to regularize the control polygon associated with the degree 16 airfoil representation (see [6], Fig. 3).

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 1

TARGET CURVE, CURVEFIT AND CONTROL POLYGON
RAE2822

DEGREE-16 BEZIER CURVEFIT
UPPER SURF. CONTROL POLYGON
LOWER SURF. CONTROL POLYGON
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From a theoretical viewpoint, our construction guarantees rigorously nested search spaces, and exact
upward transfer operators (from low to high-degree parameterization). This is illustrated in Fig. 1 in which
the supports of three nested parameterizations of an airfoil are sketched.

Note that in the case of Fig. 1, apart from the specified endpoints, the abscissas of the degree-4 support X
are not a subset of the abscissas of any support of a higher degree parameterization. Nevertheless, any Bézier
curve given on the degree-4 support can be expressed exactly on any other support of higher degree provided it
results, as in this example, from the degree elevation process. The parameterizations are nested, or embedded
in one another in this sense precisely.

Fig. 2 represents the RAE2822 airfoil and the lower and upper control polygons of degree-16 Bézier least-
squares curvefits. The RAE2822 airfoil is a classical geometry in computational aerodynamics, known for its
low-drag performance in the transonic regime. This shape has been tabulated by the European Project
ECARP [4].

By introducing a conceptual parallel from grid (for the purpose of solving a PDE) to geometrical param-
eterization (for the purpose of optimizing a shape), we were able to define formally a full and adaptive

multi-level optimum-shape algorithm (FAMOSA), analogous in its multi-level logical structure to the classical
full multigrid method (FMG) (known to have optimum linear complexity w.r.t. the number of degrees of free-
dom [1]).

In [7], we demonstrated by numerical simulation the effectiveness of certain partial steps of this construction
for problems of drag reduction for transonic flight, and external noise reduction for supersonic flight. How-
ever, for non-trivial geometries discretized a priori by an unstructured volume mesh, another ingredient was
added to the numerical method: the free-form deformation technique [2] has been introduced as recommended
in [15]. This makes the two processes of boundary-deformation that pilots the optimization, and volume-mesh

deformation that supports the flow computation, a single one. The true unknowns of the numerical algorithm
are then the parameters defining the shape deformation rather than the shape itself. Much more general geom-
etries can be handled in this versatile way since, at the initial stage of the computation, the reference geometry

is provided in great generality by means of a three-dimensional unstructured grid, subsequently deformed by
the optimization process, subject to a number of geometrical constraints.

Fig. 3, from [7], illustrates the bounding box employed to parameterize a wing deformation in a supersonic
flow optimization at freestream Mach number 1.8, angle of attack 1�. Using such setting, the wing geometry of
an aircraft in supersonic flow has been optimized by minimization of a functional of the form:
Fig. 3
curvili
J ¼ J SB þ J CL
þ J CD

þ J Vol ð9Þ

in which
J SB ¼
Z

XSB

ðrpÞ2 dX

�Z
XSB

ðrp0Þ2 dX ð10Þ
. Free-form deformation about a wing geometry: bounding box of a Bézier parameterization of degree 4� 1� 4 in the three
near directions; the symbols d indicate fixed control points; the other control points are free to move vertically.
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is a measure of the pressure source of the sonic boom, and is to be reduced, whereas the other terms are pen-
alty functions related to constraints on lift, drag and wing-box volume:
Fig. 4.
degree
J CL
¼ 104 � jDCLj if DCL < �10�3

0 if DCL P �10�3

(

J CD
¼ 0 if DCD 6 10�3

104 � DCD if DCD > 10�3

(
J Vol ¼ 104 �maxð�DVol;0Þ

ð11Þ
where Dg ¼ ðg � g0Þ=g0 for g ¼ CL, CD or Vol and g0 is the value of g for the initial design.
An unstructured mesh of 173526 nodes and 981822 tetrahedral elements has been used as an initial domain

discretization, and iteratively deformed, without changing the mesh topology. The deformation was defined in
three dimensions as a tensorial Bézier parameterization:
xðt1; t2; t3Þ ¼ x0 þ
Xn1

k¼0

Xn2

‘¼0

Xn3

m¼0

Bk
n1
ðt1ÞB‘

n2
ðt2ÞBm

n3
ðt3Þpk;‘;m; ð12Þ
Here, x0 represents a point of the original geometry, x its new location after deformation, and pk;‘;m is a generic
control point.

Three embedded parameterizations were considered corresponding to ðn1; n2; n3Þ ¼ ð4; 1; 2Þ; ð4; 1; 4Þ
and ð6; 1; 4Þ. In this preliminary test, we employed the simplex method, but not yet in the context of FAMOSA.
Instead, we considered only a ‘‘one-way-up’’ algorithm, in which the vector of degrees ðn1; n2; n3Þ is successively
enhanced twice, each time after completion of a partial optimization step. The convergence of the optimization
iteration is indicated in Fig. 4 where the benefits of this basic hierarchical algorithm is evident.

The three-level algorithm is observed to be approximately three times faster than the original one. Although
we do not have a rigorous justification of this result, it can be related to the classical result concerning the
nested iteration in the multigrid theory, in which a progressive grid enhancement alone yields a convergence
rate improvement by a factor of log N (N: number of degrees of freedom), corresponding, when the refinement
is geometrical, to the number of considered levels.

Perhaps more importantly in the context of pre-industrial optimization, the improvement realized by the
multi-level strategy can be viewed as an accuracy improvement for fixed amount of computational effort.
The multi-level approach does seem to achieve the accuracy associated with the fine parameterization, whereas
Convergence history of the simplex algorithm with only finest parameterization (degree 6–1–4) vs. simplex algorithm with the
of parameterizations gradually increased at iterations 150, 300 and 450.
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with the basic algorithm, the iteration would probably be interrupted prior to full convergence, thus not fully
exploiting the potential of the fine parameterization.

The purpose of this new contribution is twofold: (i) to test a full multi-level iteration including downward
transfers as well as upward ones (‘‘FMOSA’’), and (ii) to propose and experiment a parameterization adaption
(ultimately ‘‘FAMOSA’’), and thus demonstrate the respective merits of both methodological enhancements.

2. Testing a full multi-level algorithm on a model problem

A numerical experimentation has been conducted to evaluate the gain in computational cost realized by
various hierarchical algorithms over the basic optimization iteration.

The test problem is a simple model from calculus of variations in which one minimizes the shape functional
Fig. 5.
optimu
J ¼ JðyðtÞÞ ¼ pa

A
ð13Þ
in which x(t) is given, smooth and monotone increasing,
p ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðtÞ2 þ y 0ðtÞ2

q
xðtÞdt; A ¼

Z 1

0

yðtÞx0ðtÞxðtÞdt ð14Þ
are, for specified xðtÞ > 0 and a > 1, the pseudo-length of the arc, and the pseudo-area below the arc. This
model problem has been studied extensively in [8] to which we refer for a full description of the numerical
test-case which corresponds to a � 2:03, for which the functional is known to be convex, and a certain x(t)
for which the minimizing shape is, to rounding errors, the half-thickness distribution of the RAE2822 airfoil.

In the basic iteration, after approximation of the integrals by the trapezoidal rule with stepsize h ¼ 1
1000

, and
the representation of the unknown shape by a Bézier parameterization, the numerical optimum is determined
by a procedure of the SCPIP package [19] (Courtesy of the University of Bayreuth), with gradient
specification.

Fig. 5a indicates for different values of the degree n, the minimum value achieved for the functional J at
full convergence, and Fig. 5(b) the corresponding suboptimal shapes (at iterations 50 and 200 in the case
n ¼ 10). By nature, near the optimum where rJ ¼ 0, the shapes are more sensitive to non-optimality than
the functional; note that at iteration 50, the incomplete convergence degrades visibly the accuracy of the shape
definition expected from the high degree n ¼ 10.

Next, we examine the effect of the iterative strategy on the convergence rate. Fig. 6(a) provides the conver-
gence history of the basic algorithm for three experiments run independently, from the same initial profile
(y ¼ 0), using n ¼ 2, 5 or 10. Clearly, as the degree is augmented, the accuracy improves, but the stiffness
increases also: more iterations are necessary to achieve convergence. Fig. 6(c) is a comparison of the basic iter-
ation for n ¼ 10, with (i) the algorithm based on two successive degree elevations (n ¼ 2, then 5, then 10), each
elevation being made after a partial optimization phase, and with (ii) the full multi-level optimum-shape algo-

rithm (FMOSA) of [6] modeled in logical structure on the full multigrid method, including both downward and
upward transfers of information, as indicated in Table 1.
Effect of degree n of Bézier parameterization on accuracy of optimum shape; (a) left: functional value J at convergence; (b) right:
m shape (n ¼ 2, 5 or 10).



  

   

Fig. 6. Iterative performance of various algorithms; (a) top left: basic algorithm for n ¼ 2, 5 or 10; (b) top right: algorithm with
progressive degree elevation for proper and improper upward transfers; (c) bottom left: basic algorithm for n ¼ 10, algorithm with
progressive degree elevation (n ¼ 2, then 5, then 10), and full multi-level algorithm (FMOSA); (d) bottom right: close-up of (c).

Table 1
Schema of the employed ‘‘saw-tooth’’ FMOSA; integers denote optimization iteration counts, enclined arrows (ƒ or !) transfers prior to
relaxation sweeps, and vertical arrows (›) mere degree elevations; an arrow pointing downward (!) corresponds to the reformulation of
the minimization problem as the search of a shape correction in a nested parameterization, subsequently expressed exactly over a higher
degree support by virtue of the embedding [6]; the final cycle is repeated
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Fig. 6(d) is a close-up of the initial stage of the same plot of iterative convergence. A close observation of
Fig. 6(c) indicates that the last noticeable change in functional value occurs with the basic method near iter-
ation 200, whereas with progressive degree elevation, it is near 60: again, with three levels considered, the algo-
rithm based on successive degree elevations is essentially three times faster. FMOSA is even twice faster,
realizing here an improvement in convergence rate by a factor close to 6 over the basic method.

Lastly, Fig. 6(b) is a comparison of the algorithm based on two successive degree elevations (n ¼ 2, then 5,
then 10) using either the advocated transfer operator (based on the classical degree-elevation process), or
another transfer based on the ‘2-projection onto a non-embedded parameterization. Evidently, with the
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inexact transfer (improper in H1-norm), both iterations at the higher degrees stabilize with shapes associated
with degraded values of the criterion; in fact, the degree-10 iteration is initiated at the point of lowest value
of the criterion ever achieved by the degree-5 iteration; however this transfer results in a degradation of the
criterion. This experiment confirms the importance of the adequate choice to be made of the degree elevation
transfer operator.

In conclusion, these experiments have confirmed the great potential of multi-level algorithms to improve
significantly the convergence rate and the accuracy of the shape optimization iteration. Incomplete iterative
convergence results in a poor definition of the optimum shape. Transfers by the classical process of degree
elevation are strongly recommended. Qualitatively parallel between multigrid and the multi-level optimization
iteration applies well.

3. Parameterization adaption by regularization

When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very
classically, mesh adaptivity instead of, or in conjunction with increasing the number of degrees of freedom, is a
very effective means to accelerate grid convergence. Numerous methods exist: element division, node move-
ment, or regeneration, in particular. Similarly, when optimizing a shape by means of an explicit geometrical
representation, as we advocate, it is natural to seek for an analogous concept of parameterization adaptivity.
We propose here a self-adaptive procedure for planar curves represented by Bézier parameterizations. An
extension of the present technique to three-dimensional optimum-design in aerodynamics has been made
[11] within the framework of the so-called free-form deformation approach [2] and was found effective. How-
ever here, for brevity, we restrict our discussion to a two-dimensional setting.

For static adaption, our algorithms attempt to adapt the support X by alternating two complementary
phases:

(1) Optimization: optimize the design vector Y for fixed support X ¼ X 0 according to some physical crite-
rion, and involving the numerical solution of a PDE in a domain whose boundary includes the param-
eterized shape; let Y0 be the result of this phase;

(2) Adaption: Given the parameterization ðX 0; Y 0Þ of an approximate optimum shape, define a better sup-
port X1; substitute X1 to X0.

The above split into two separate phases, coupled via a form of Nash game, is made with the purpose of
defining the adaption procedure as a simple, economical geometrical data post-processing.

Before defining our particular procedure, we discuss the basic objective that has guided its construction. In
[9,10], for the purpose of a more fundamental analysis about the structure of a pertinent eigensystem, a shape-

reconstruction or shape-inverse problem has been introduced, firstly by an intrinsic formulation:
min
c

JðcÞ :¼
Z

c

1

2
yðxÞ � �yðxÞ½ �2 dx ð15Þ
where c is the unknown shape analytically represented by yðxÞ; �yðxÞ is the analogous analytical representation
of a given target curve �c, subsequently assumed, without great loss of generality, to be a Bézier curve of degree
n and support X. This problem is transformed into a parametric optimization by assuming Bézier representa-
tions of the curves over the support X:
min
Y2Rnþ1

jnðY Þ :¼
Z 1

0

1

2
BnðtÞTðY � Y Þ
h i2

nBn�1ðtÞTDX|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
xðtÞ0¼d

dtBnðtÞTX

dt ð16Þ
The symbol D represents the forward-difference operator that appears when differentiating Bernstein
polynomials.

Since the functional is quadratic, the parametric gradient is linear (in Y):
j0nðY Þ ¼ AðX ÞY � bðX Þ ð17Þ
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where
AðX Þ ¼
Z 1

0

BnðtÞBnðtÞT|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðnþ1Þ�ðnþ1Þ

matrix

nBn�1ðtÞTDX|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
linear form

in X

dt

bðX Þ ¼
Z 1

0

BnðtÞ|ffl{zffl}
column
vector

BnðsÞTY 0nBn�1ðtÞTDX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scalar-valued

nonlinear function of X

dt

ð18Þ
In particular, for a uniform support X, the matrix A reduces to the simple form:
A ¼
Z 1

0

BnðtÞBnðtÞTdt ¼ fAa;bg ð19Þ
in which the coefficients fAa;bg are obtained by a simple calculation:
Aa;b ¼
1

2nþ 1

Ca
nCb

n

Caþb
2n

ð20Þ
Solving the parametric minimization problem by steepest-descent (without special preconditioning) is
equivalent to applying the point-Jacobi iteration on the linear optimality condition j0nðY Þ ¼ 0. Thus, the
eigenstructure of the matrix A is fundamental in a modal analysis of the multi-level strategy. In particular,
this matrix indicates how does the parameterization condition the stiffness of the optimization iteration.
The diagonalization of this matrix revealed many properties discussed in [9,10]. In comparison with the
usual structure of Fourier modes that classically supports the modal analysis of multigrid for the solution
of a PDE, the matrix A exhibits, not surprisingly, the structure of an integral instead of a differential oper-
ator. Consequently, contrary to the usual situation of multigrid for PDE’s, the large eigenvalues are
associated with smooth modes. Hence, the minimization iteration acts as an anti-smoother. For this rea-
son, here viewed in an algebraic setting, many authors have developed effective preconditioners to steep-
est-descent-type algorithms, in functional, or algebraic formulations, often resulting in the inversion of
a discrete Laplacian. In a functional-space setting, it is well-known that the shape and the gradient have
not the same regularity. Thus the steepest-descent algorithm, without preconditioning, is an unbounded
iteration.

This observation has a very practical consequence. When following the iterative convergence, one can
easily observe the control polygon becoming increasingly irregular, with large variations from point to
point, sometimes with numerous sign alternations near full convergence of the optimization process (see
e.g. Fig. 2). Hence, mimicking the classical regularization of the gradient by a smoothing operator, we
are led to redefine, at intervals or dynamically, the geometrical representation in a way that regularizes

the parametric representation. Among all the criteria that we tested to implement this simple concept, we
observed [16] the best efficiency with a criterion that reduces the total variation of the ordinates of the con-
trol points.

Thus, the adaption separately is carried via a Stackelberg game in which the support X plays the role of
leader, and the design vector Y of follower. In short: for any candidate alternate support X, a corresponding
vector Y is defined so that the Bézier curve associated with the control polygon ðX ; Y Þ approximates the ori-
ginal one in the sense of least squares; among all possible supports X, X1 is taken to be the one for which the
total variation (TV) in the components of the corresponding vector Y1 is minimal. The best support is thus
defined to be the one that best regularizes the control polygon in the sense of least TV among all least-squares
approximates. Following this principle, the main equations are now derived. We put:
X ¼ Enþ e; Y ¼ F gþ f ð21Þ

in which n and g are reduced vectors containing the components of X and Y respectively that are free (which is
problem dependent), e and f contain the other components, given by the specification of geometrical boundary
conditions, E and F are rectangular matrices. For example, for an airfoil upper surface with a vertical tangent
at the origin, and specified endpoints, we set:
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x0 ¼ x1 ¼ 0; xn ¼ 1; y0 ¼ yn ¼ 0 ð22Þ

and thus here n ¼ ðx2; x3; . . . ; xn�1ÞT, g ¼ ðy1; y2; . . . ; ynÞ

T in particular. For given X (i.e. given n), the vector Y

(or g) is calculated to minimize the following ‘2-norm:
J ¼
Z 1

0

1

2
½yðxÞ � y0ðxÞ�2dx ð23Þ
in which �yðxÞ and �y0ðxÞ represent the Bézier curves whose parameterizations are ðX ; Y Þ and ðX 0; Y 0Þ respec-
tively. Using now the parameterization indicated in (1) yields:
J ¼
Z 1

0

1

2
½yðtÞ � y0ðt;X Þ�2x0ðtÞdt ð24Þ
in which
y0ðt;X Þ ¼ �y0ðxðtÞÞ ¼ �y0ðBnðtÞTX Þ ¼ BnðsÞTY 0 ð25Þ
where the parameter value s is related to the change of support X 0 ! X , and defined uniquely by the condition
x0ðsÞ ¼ xðtÞ, that is:
s ¼ sðt;X Þ=BnðsÞTX 0 ¼ BnðtÞTX ð26Þ
Now, since oyðtÞ=oY ¼ BnðtÞT, and x0ðtÞ ¼ nBn�1ðtÞTDX , differentiating J w.r.t. Y first gives:
oJ
oY
¼
Z 1

0

½BnðtÞTY � y0ðt;X Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scalar

BnðtÞT nBn�1ðtÞTDX|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
scalar

dt ð27Þ
or, equivalently:
oJ
oY

� �T

¼
Z 1

0

BnðtÞ½BnðtÞTY � BnðsÞTY 0�nBn�1ðtÞTDX dt ¼ AðX ÞY � bðX Þ ð28Þ
in which the matrix A(X) and the vector b(X) have been defined in (18).
Unsurprisingly, the matrix A(X) is real-symmetric positive-definite; additionally it depends linearly upon

the vector X, thus
AðX Þ ¼A� X ð29Þ

where A ¼ A0ðX Þ is a tensor of order 3, independent of X, and � stands for the contracted product implied by
(18).

So, the normal equations implicitly defining the vector g in terms of the vector n, that is,
oJ
og
¼ oJ

oY
F ¼ 0 ð30Þ
are written equivalently as follows:
oJ
og

� �T

¼ F TðAðX ÞY � bðX ÞÞ ¼ 0 ð31Þ
Once the above normal equations are solved for g, yielding the vector Y, the (lack of) regularity of the control
polygon ðX ; Y Þ can be measured by the following criterion:
J 2ðY ðnÞÞ ¼ TV ðY Þ ¼
Xn

k¼1

jyk � yk�1j ð32Þ
The derivative oJ 2=on can be calculated by successive applications of the chain rule. First let:
oJ 2

oY
¼ pðY ÞT ð33Þ
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and note that this derivative is not defined when the quantity yk � yk�1 changes sign. This difficulty can be alle-
viated by substituting the following regularized criterion to J2:
Fig. 7.
y ¼ �yðx
differen
J e
2ðY Þ ¼

Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyk � yk�1Þ

2 þ e
q

ð34Þ
in which e is a small positive number. For any index value k ¼ 1; 2; . . . ; n� 1, one has:
pe
kðY Þ ¼

oJ e
2

oyk

¼ yk � yk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyk � yk�1Þ

2 þ e
q � ykþ1 � ykffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðykþ1 � ykÞ
2 þ e

q ð35Þ
Passing to the limit (e! 0) yields:
pkðY Þ ¼

þ2 if yk > maxðyk�1; ykþ1Þ;
þ1 if yk�1 < yk ¼ ykþ1; or if yk�1 ¼ yk > ykþ1;

0 if minðyk�1; ykþ1Þ < yk < maxðyk�1; ykþ1Þ;
or if yk�1 ¼ yk ¼ ykþ1;

�1 if yk�1 ¼ yk < ykþ1; or if yk�1 > yk ¼ ykþ1;

�2 if yk < minðyk�1; ykþ1Þ:

8>>>>>>>><>>>>>>>>:
ð36Þ
Note that the above definition applies everywhere, but the resulting derivative is not necessarily continuous; it
is subject to occasional jumps (see Fig. 7). Now:
oJ 2

og
¼ oJ 2

oY
oY
og
¼ pðY ÞTF ð37Þ
and:
oJ 2

on
¼ oJ 2

og
og
on
¼ pðY ÞTF

og
on

ð38Þ
The matrix-valued factor
q ¼ og
on

ð39Þ
is the derivative of the design vector w.r.t. the support vector subject to the constraint of least-squares approx-
imation of the original Bézier curve (31). It results from differentiating this constraint w.r.t. n. To this purpose,
calculate first the differential of the constraint corresponding to an arbitrary perturbation dX ¼ E dn:
F T½dAðX ÞY þ AðX ÞdY � b0ðX ÞdX �E ¼ 0 ð40Þ
 

  

 

 

 

 

 

 

 

Gradient of the functional J2; here n ¼ 4, n ¼ ðx2; x3ÞT, ðx0 ¼ x1 ¼ 0; x4 ¼ 1Þ, and g ¼ ðy1; y2; y3Þ
T, ðy0 ¼ y4 ¼ 0Þ is calculated using

Þ ¼
ffiffiffi
x
p
ð1� xÞ=6 as a target curve, yielding J 2ðnÞ and rJ 2ðnÞ; three independent results (by formal calculation, program

tiation [17], and finite-difference) superimpose accurately.
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in which here the superscript 0 indicates a differentiation w.r.t. the vector X. But
dAðX Þ ¼ A0ðX Þ � dX ð41Þ
by definition of the symbols, where A0ðX Þ ¼A is the tensor of order 3, independent of X, introduced in (29).
This gives:
dAðX Þ ¼A� dX ¼ AðdX Þ ð42Þ
Denote fekg (k ¼ 0; 1; . . . ; n) the canonical basis of Rnþ1. Eq. (42) yields in particular the following expression
of the partial derivative:
oAðX Þ
oxk

Y ¼ AðekÞY ð43Þ
In what follows, let the symbol eAY denote the matrix of dimension ðnþ 1Þ � ðnþ 1Þ whose kth column is equal
to the vector AðekÞY . It follows that (40) is equivalent to:
F T ~AY � b0ðX Þ þ AðX Þ oY
oX

	 

E ¼ 0 ð44Þ
Additionally:
oY
oX

E ¼ F
og
oX

oX
on
¼ Fq ð45Þ
The unknown rectangular matrix q is therefore the solution of the following linear system:
F T eAY � b0ðX Þ
h i

E þ F TAðX ÞFq ¼ 0 ð46Þ
In summary, for a given vector n, the criterion J2 and its gradient oJ 2=on subject to the constraint of least-
squares approximation of an initial Bézier parameterization, can be calculated by the following algorithm:

(1) Regularity criterion, J2:
� Set X ¼ Enþ e, and compute the matrix A(X) and the vector b(X); perform the Choleski decomposi-

tion of the matrix F TAðX ÞF .
� Use this decomposition to solve the following linear system for the vector g:
F TAðX ÞF g ¼ F T½bðX Þ � AðX Þf � ð47Þ

set Y ¼ F gþ f , and compute J 2 ¼ J 2ðY Þ.

(2) Gradient, oJ 2=on:
� Compute the vector p(Y), and the matrices eAY and b0ðX Þ.
� Use again the same Choleski decomposition to solve the following linear system for the matrix q:
F TAðX ÞFq ¼ F T½b0ðX Þ � eAY �E ð48Þ

and compute the gradient: oJ 2=on ¼ pTFq.

Lastly, we note that the derivative b0ðX Þ contains two terms:
b0ðX Þ ¼ b01ðX Þ þ b02ðX Þ ð49Þ

where
b01ðX Þ ¼
Z 1

0

BnðtÞy0ðt;X ÞnBn�1ðtÞTDdt ð50Þ
and since the scalar factors y0ðt;X Þ and nBn�1ðtÞTDX commute:



Fig. 8.
the su
contro
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b02ðX Þ ¼
Z 1

0

BnðtÞy0ðt;X Þ0nBn�1ðtÞTDX dt ð51Þ
in which again the superscript 0 indicates a differentiation w.r.t. the vector X. The calculation of the term b01ðX Þ
from the function y0ðt;X Þ ¼ BnðsÞTY 0 is straightforward. For the second term, b02ðX Þ, an additional derivative
of this nonlinear function is needed. It can be shown that:
y0ðt;X Þ0 ¼ Bn�1ðsÞTDY 0

Bn�1ðsÞTDX 0
BnðtÞT ð52Þ
in which again s ¼ sðt;X Þ is the solution of Eq. (26). To illustrate this derivation, Fig. 7 depicts the gradient in
a particular case, exhibiting several fronts of discontinuity.

Equipped with this algorithm for calculating the measure of the lack of regularity of an initial Bézier
parameterization ðX 0; Y 0Þ by the criterion J2 and its gradient oJ 2=on, the regularity can be improved by min-
imization of J2 by means of a standard gradient-based procedure. For this, we have used the FFSQP proce-
dure [18] (Courtesy of the University of Maryland) with gradient specification.

Fig. 8(a) demonstrates the regularizing effect on the control polygon of an initial Bézier curve by means of
our adaption procedure. Here, the profile y ¼ ffiffiffi

x
p ð1� xÞ=6, which is very much alike the RAE2822-airfoil half-

thickness distribution, was defined as a target. For subsequent purpose, note that by letting xðtÞ ¼ t2, one gets
yðtÞ ¼ tð1� t2Þ=6; therefore, this profile is the Bézier curve of degree 3 associated with the control points:
P 0 ¼
0

0

� �
; P 1 ¼

0
1

18

 !
; P 2 ¼

1
3
1
9

 !
; P 3 ¼

1

0

� �
ð53Þ
The actually considered initial parameterization is the least-squares approximate of the target associated with
the degree-12 support obtained by 8 degree elevations from 0; 0; 1

3
; 2

3
; 1

� �
. The corresponding polygon is the

‘‘jagged’’ line of Fig. 8(a).
After application of the adaption procedure, the new profile is essentially superimposed to the former, and

cannot visually be distinguished from it, whereas the associated parameterization has been regularized. The
new control polygon is convex, in this case however different from the result of 9 degree elevations from
(53). Fig. 8(b) shows the iterative convergence of the criterion J2.

Lastly, and most importantly, we measure the gain realized by the self-adaptive parameterization on the
accuracy of the optimization. For the model problem (13) in the particular case where xðtÞ 	 1 and a ¼ 2,
the functional is convex and the optimum shape is the circular arc x� 1

2

� �2 þ y2 ¼ 1
4
. For n ¼ 3, 6 and 12, first

independently, we have again used the initial condition y ¼
ffiffiffi
x
p
ð1� xÞ=6 in Bézier form, and conducted an

alternating sequence of optimization and adaption. The results form a decreasing sequence of functional val-
ues represented alternatively by the symbols d and s in Fig. 9(a).

As expected, the approximate minimum achieved by the first optimization from the initial shape, decreases
with a larger degree n, since the search space is enlarged. The minimum achieved at convergence of the opti-
mization-adaption sequence, is very close to the theoretical value of 2p even when n is small; however, it is not
 
 

Regularizing effect of Bézier parameterization adaption; (a) left: initial profile (least-squares approximate of y ¼ ffiffiffi
x
p ð1� xÞ=6 over

pport resulting from 8 degree elevations from (0; 0; 1
3
; 2

3
; 1)), new profile (essentially superimposed), and the two corresponding

l polygons; (b) right: iterative convergence of the criterion J2 by the procedure FFSQP with gradient specification.



     

     

Fig. 9. Coupling optimization with adaption (a), and with a hierarchical strategy (b); the figures close to symbols on (b) are optimization
iteration counts, providing an indication on the numerical stiffness.
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monotonic with n. This could be due either to unequally converged stiff systems, or to the bias introduced by
the Stackelberg coupling strategy. Nevertheless, the adaption, acting as a preconditioner on the optimization
phase, performs remarkably well when the degree is low. Using the best point achieved with n ¼ 3, as an initial
Table 2
Proposed adaptive saw-tooth variant: FAMOSA; the parameterization-support adaptions (!) are performed at fixed degree prior to
degree-elevation+relaxation ƒ; again ! indicates the formulation of a correction problem over the embedded support inherited from the
last adaption, and › a mere degree-elevation; N1, N2: iteration counts
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condition in Fig. 9(b), a sequence of degree-elevation followed by an adaptive optimization was realized twice.
This basic hierarchical strategy has permitted to achieve the lowest functional value of all, realizing for n ¼ 12
a minimization visibly more effective and more economical than the basic method using a parameterization of
the same degree.

4. Conclusions

Multi-level strategies are better equipped to alleviate the numerical stiffness in numerical shape optimiza-
tion when a parameterization of high degree is used. Additionally, parameterization self-adaptivity improves
noticeably the accuracy permitting lower degrees to be used with equivalent performance. Both methodolog-
ical elements combine very well, and numerous promising algorithmic variants are to be explored, such as the
FAMOSA defined in Table 2.

In the perspective of pre-industrial optimum-shape design, the greatest benefit drawn from a reduced
numerical stiffness may lie in the potential to identify the optimum shape more accurately, the diminished
computational cost resulting mostly in engineering comfort.
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